Fermilab Fermilab Core Computing Division

Library Home |  Ask a Librarian library@fnal.gov |  Book Catalog |  Library Journals |  Requests |  SPIRES |  Fermilab Documents |

Fermilab Library
SPIRES-BOOKS: FIND KEYWORD MEDIA SOCIOLOGY *END*INIT* use /tmp/qspiwww.webspi1/11199.10 QRY 131.225.70.96 . find keyword media sociology ( in books using www Cover
Image
Call number:9783319436395:ONLINE Show nearby items on shelf
Title:Cyberemotions Collective Emotions in Cyberspace
Author(s):
Date:2017
Size:1 online resource (XIV, 318 p. 90 illus., 34 illus. in color p.)
Contents:Introduction to Cyberemotions -- Part I Foundations -- Part I Foundations -- Part III Modeling -- Part IV Applications
ISBN:9783319436395
Series:eBooks
Series:Springer eBooks
Series:Springer 2017 package
Keywords: Physics , Application software , Mass media , Communication , Social sciences in mass media , Experiential research , Physics , Data-driven Science, Modeling and Theory Building , Media Sociology , Psychology Research , Societal Aspects of Physics, Outreach and Education , Computer Appl. in Social and Behavioral Sciences , Information Systems Applications (incl. Internet)
Availability:Click here to see Library holdings or inquire at Circ Desk (x3401)
Click to reserve this book Be sure to include your ID please.
More info:Amazon.com
More info: Barnes and Noble
Full Text:Click here
Location: ONLINE

Cover
Image
Call number:SPRINGER-2001-9789401006668:ONLINE Show nearby items on shelf
Title:Organizations and Strategies in Astronomy Volume II
Author(s):
Date:2001
Size:1 online resource (280 p.)
Note:10.1007/978-94-010-0666-8
Contents:Strategies for Bringing a 19th-Century Observatory up to the Standards of 21st-Century Astronomy -- IUCAA: A New Experiment for Indian Universities -- Background and Achievements of UN/ESA Workshops on Basic Space Science 1991–2001 --
Organising and Funding Research at a European Level -- OPTICON: EC Optical Infrared Coordination Network for Astronomy -- Coordinating Multiple Observatory Campaigns -- New Strategies in Ground-Based Observing -- Large Surveys in
Cosmology: The Changing Sociology -- The ESO Observing Programmes Committee -- Astronomical Software Strategies -- Scientometrics: The Research Field and its Journal -- Comments on Refereeing -- Communicating and Networking in
Astronomy Libraries -- Editing the Encyclopedia of Astronomy and Astrophysics -- Editing a Multilingual Astronomy Magazine -- Working with the Media: The Royal Astronomical Society Experience -- Creativity in Arts and Sciences: A
Survey -- Updated Bibliography of Socio-Astronomy
ISBN:9789401006668
Series:eBooks
Series:SpringerLink (Online service)
Series:Springer eBooks
Series:Astrophysics and Space Science Library: 266
Keywords: Physics , Observations, Astronomical , Astronomy , Social sciences , Sociology , Physics , Astronomy, Observations and Techniques , Sociology, general , Social Sciences, general
Availability:Click here to see Library holdings or inquire at Circ Desk (x3401)
Click to reserve this book Be sure to include your ID please.
More info:Amazon.com
More info: Barnes and Noble
Full Text:Click here
Location: ONLINE

Cover
Image
Call number:SPRINGER-1994-9783034885010:ONLINE Show nearby items on shelf
Title:Fractals in Biology and Medicine
Author(s):
Date:1994
Size:1 online resource (397 p.)
Note:10.1007/978-3-0348-8501-0
Contents:Preface: Summary of the Symposium -- The Significance of Fractals for Biology and Medicine. An Introduction and Summary -- Fractal Geometry and Biomedical Sciences7 -- A Fractal’s Lacunarity, and how it can be Tuned and Measured --
Spatial and Temporal Fractal Patterns in Cell and Molecular Biology -- Chaos, Noise and Biological Data -- Fractal Landscapes in Physiology & Medicine: Long-Range Correlations in DNA Sequences and Heart Rate Intervals -- Fractals in
Biological Design and Morphogenesis -- Design of Biological Organisms and Fractal Geometry -- Fractal and Non-Fractal Growth of Biological Cell Systems -- Evolutionary Meaning, Functions and Morphogenesis of Branching Structures in
Biology -- Relationship Between the Branching Pattern of Airways and the Spatial Arrangement of Pulmonary Acini — A Re-Examination from a Fractal Point of View -- Multivariate Characterization of Blood Vessel Morphogenesis in the Avian
Chorioallantoic Membrane (CAM): Cell Proliferation, Length Density and Fractal Dimension -- Phyllotaxis or Self-Similarity in Plant Morphogenesis -- Fractals in Molecular and Cell Biology -- Evolutionary Interplay Between Spontaneous
Mutation and Selection: Aleatoric Contributions of Molecular Reaction Mechanisms -- Error Propagation Theory of Chemically Solid Phase Synthesized Oligonucleotides and DNA Sequences for Biomedical Application -- Fractional Relaxation
Equations for Protein Dynamics -- Measuring Fractal Dimensions of Cell Contours: Practical Approaches and their Limitations -- Fractal Properties of Pericellular Membrane from Lymphocytes and Leukemic Cells -- Cellular Sociology:
Parametrization of Spatial Relationships Based on Voronoi Diagram and Ulam Trees -- A Fractal Analysis of Morphological Differentiation of Spinal Cord Neurons in Cell Culture -- Fractal Dimensions and Dendritic Branching of Neurons in
the Somatosensory Thalamus -- Fractal Structure and Metabolic Functions -- Organisms as Open Systems -- Transfer to and across Irregular Membranes Modelled by Fractal Geometry -- Scaling and Active Surface of Fractal Membranes --
Structure Formation in Excitable Media -- Colony Morphology of the Fungus Aspergillus Oryzae -- Estimation of the Correlation Dimension of All-Night Sleep EEG Data with a Personal Super Computer -- Fractals in Pathology -- Changes in
Fractal Dimension of Trabecular Bone in Osteoporosis: A Preliminary Study -- Use of the Fractal Dimension to Characterize the Structure of Cancellous Bone in Radiographs of the Proximal Femur -- Distribution of Local-Connected Fractal
Dimension and the Degree of Liver Fattiness from Ultrasound -- Fractal Dimension as a Characterisation Parameter of Premalignant and Malignant Epithelial Lesions of the Floor of the Mouth -- Modelling -- Modelling HIV/AIDS Dynamics --
Morphological Diagnosis Turns from Gestalt to Geometry -- Fluorescence Recovery after Photobleaching Studied by Total Internal Reflection Microscopy: An Experimental System for Studies on Living Cells in Culture -- Anomalous Diffusion
and Angle-Dependency in the Theory of Fluorescence Recovery after Photobleaching -- List of Speakers -- List of Participants
ISBN:9783034885010
Series:eBooks
Series:SpringerLink (Online service)
Series:Springer eBooks
Keywords: Life sciences , Health informatics , Bioinformatics , Computational biology , Biomathematics , Life Sciences , Computer Appl. in Life Sciences , Health Informatics , Mathematical and Computational Biology , Physiological, Cellular and Medical Topics
Availability:Click here to see Library holdings or inquire at Circ Desk (x3401)
Click to reserve this book Be sure to include your ID please.
More info:Amazon.com
More info: Barnes and Noble
Full Text:Click here
Location: ONLINE

Cover
Image
Call number:SPRINGER-1983-9783642883385:ONLINE Show nearby items on shelf
Title:Synergetics An Introduction
Author(s): Hermann Haken
Date:1983
Edition:Third Revised and Enlarged Edition
Size:1 online resource (390 p.)
Note:10.1007/978-3-642-88338-5
Contents:1. Goal -- 1.1 Order and Disorder: Some Typical Phenomena -- 1.2 Some Typical Problems and Difficulties -- 1.3 How We Shall Proceed -- 2. Probability -- 2.1 Object of Our Investigations: The Sample Space -- 2.2 Random Variables -- 2.3
Probability -- 2.4 Distribution -- 2.5 Random Variables with Densities -- 2.6 Joint Probability -- 2.7 Mathematical Expectation E(X), and Moments -- 2.8 Conditional Probabilities -- 2.9 Independent and Dependent Random Variables --
2.10 Generating Functions and Characteristic Functions -- 2.11 A Special Probability Distribution: Binomial Distribution -- 2.12 The Poisson Distribution -- 2.13 The Normal Distribution (Gaussian Distribution) -- 2.14 Stirling’s
Formula -- 2.15 Central Limit Theorem -- 3. Information -- 3.1 Some Basic Ideas -- 3.2 Information Gain: An Illustrative Derivation -- 3.3 Information Entropy and Constraints -- 3.4 An Example from Physics: Thermodynamics -- 3.5 An
Approach to Irreversible Thermodynamics -- 3.6 Entropy—Curse of Statistical Mechanics? -- 4. Chance -- 4.1 A Model of Brownian Movement -- 4.2 The Random Walk Model and Its Master Equation -- 4.3 Joint Probability and Paths. Markov
Processes. The Chapman-Kolmogorov Equation. Path Integrals -- Sections with an asterisk in the heading may be omitted during a first reading. -- 4.4 How to Use Joint Probabilities. Moments. Characteristic Function. Gaussian Processes
-- 4.5 The Master Equation -- 4.6 Exact Stationary Solution of the Master Equation for Systems in Detailed Balance -- 4.7 The Master Equation with Detailed Balance. Symmetrization, Eigenvalues and Eigenstates -- 4.8 Kirchhoff’s Method
of Solution of the Master Equation -- 4.9 Theorems about Solutions of the Master Equation -- 4.10 The Meaning of Random Processes, Stationary State, Fluctuations, Recurrence Time -- 4.11 Master Equation and Limitations of Irreversible
Thermodynamics -- 5. Necessity -- 5.1 Dynamic Processes -- 5.2 Critical Points and Trajectories in a Phase Plane. Once Again Limit Cycles -- 5.3 Stability -- 5.4 Examples and Exercises on Bifurcation and Stability -- 5.5 Classification
of Static Instabilities, or an Elementary Approach to Thorn’s Theory of Catastrophes -- 6. Chance and Necessity -- 6.1 Langevin Equations: An Example -- 6.2 Reservoirs and Random Forces -- 6.3 The Fokker-Planck Equation -- 6.4 Some
Properties and Stationary Solutions of the Fokker-Planck-Equation -- 6.6 Time-Dependent Solutions of the Fokker-Planck Equation -- 6.6 Solution of the Fokker-Planck Equation by Path Integrals -- 6.7 Phase Transition Analogy -- 6.8
Phase Transition Analogy in Continuous Media: Space-Dependent Order Parameter -- 7. Self-Organization -- 7.1 Organization -- 7.2 Self-Organization -- 7.3 The Role of Fluctuations: Reliability or Adaptibility? Switching -- 7.4 Adiabatic
Elimination of Fast Relaxing Variables from the Fokker-Planck Equation -- 7.5 Adiabatic Elimination of Fast Relaxing Variables from the Master Equation -- 7.6 Self-Organization in Continuously Extended Media. An Outline of the
Mathematical Approach -- 7.7 Generalized Ginzburg-Landau Equations for Nonequilibrium Phase Transitions -- 7.8 Higher-Order Contributions to Generalized Ginzburg-Landau Equations -- 7.9 Scaling Theory of Continuously Extended
Nonequilibrium Systems -- 7.10 Soft-Mode Instability -- 7.11 Hard-Mode Instability -- 8. Physical Systems -- 8.1 Cooperative Effects in the Laser: Self-Organization and Phase Transition -- 8.2 The Laser Equations in the Mode Picture --
8.3 The Order Parameter Concept -- 8.4 The Single-Mode Laser -- 8.5 The Multimode Laser -- 8.6 Laser with Continuously Many Modes. Analogy with Superconductivity -- 8.7 First-Order Phase Transitions of the Single-Mode Laser -- 8.8
Hierarchy of Laser Instabilities and Ultrashort Laser Pulses -- 8.9 Instabilities in Fluid Dynamics: The Bénard and Taylor Problems -- 8.10 The Basic Equations -- 8.11 The Introduction of New Variables -- 8.12 Damped and Neutral
Solutions (R ? Rc) -- 8.13 Solution Near R = Rc (Nonlinear Domain). Effective Langevin Equations -- 8.14 The Fokker-Planck Equation and Its Stationary Solution -- 8.15 A Model for the Statistical Dynamics of the Gunn Instability Near
Threshold -- 8.16 Elastic Stability: Outline of Some Basic Ideas -- 9. Chemical and Biochemical Systems -- 9.1 Chemical and Biochemical Reactions -- 9.2 Deterministic Processes, Without Diffusion, One Variable -- 9.3 Reaction and
Diffusion Equations -- 9.4 Reaction-Diffusion Model with Two or Three Variables: The Brusselator and the Oregonator -- 9.5 Stochastic Model for a Chemical Reaction Without Diffusion. Birth and Death Processes. One Variable -- 9.6
Stochastic Model for a Chemical Reaction with Diffusion. One Variable -- 9.7 Stochastic Treatment of the Brusselator Close to Its Soft-Mode Instability -- 9.8 Chemical Networks -- 10. Applications to Biology -- 10.1 Ecology,
Population-Dynamics -- 10.2 Stochastic Models for a Predator-Prey System -- 10.3 A Simple Mathematical Model for Evolutionary Processes -- 10.4 A Model for Morphogenesis -- 10.5 Order Parameters and Morphogenesis -- 10.6 Some Comments
on Models of Morphogenesis -- 11. Sociology and Economics -- 11.1 A Stochastic Model for the Formation of Public Opinion -- 11.2 Phase Transitions in Economics -- 12. Chaos -- 12.1 What is Chaos? -- 12.2 The Lorenz Model. Motivation
and Realization -- 12.3 How Chaos Occurs -- 12.4 Chaos and the Failure of the Slaving Principle -- 12.5 Correlation Function and Frequency Distribution -- 12.6 Discrete Maps, Period Doubling, Chaos, Intermittency -- 13. Some Historical
Remarks and Outlook -- References, Further Reading, and Comments
ISBN:9783642883385
Series:eBooks
Series:SpringerLink (Online service)
Series:Springer eBooks
Series:Springer Series in Synergetics: 1
Keywords: Mathematics , Biochemistry , Dynamics , Ergodic theory , System theory , Physics , Mathematics , Dynamical Systems and Ergodic Theory , Systems Theory, Control , Theoretical, Mathematical and Computational Physics , Biochemistry, general
Availability:Click here to see Library holdings or inquire at Circ Desk (x3401)
Click to reserve this book Be sure to include your ID please.
More info:Amazon.com
More info: Barnes and Noble
Full Text:Click here
Location: ONLINE

Cover
Image
Call number:SPRINGER-1978-9783642964695:ONLINE Show nearby items on shelf
Title:Synergetics An Introduction Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology
Author(s): Hermann Haken
Date:1978
Edition:Second Enlarged Edition
Note:10.1007/978-3-642-96469-5
Contents:1. Goal -- 1.1 Order and Disorder: Some Typical Phenomena -- 1.2 Some Typical Problems and Difficulties -- 1.3 How We Shall Proceed -- 2. Probability -- 2.1 Object of Our Investigations: The Sample Space -- 2.2 Random Variables -- 2.3
Probability -- 2.4 Distribution -- 2.5 Random Variables with Densities -- 2.6 Joint Probability -- 2.7 Mathematical Expectation E(X), and Moments -- 2.8 Conditional Probabilities -- 2.9 Independent and Dependent Random Variables --
2.10*Generating Functions and Characteristic Functions -- 2.11 A Special Probability Distribution: Binomial Distribution -- 2.12 The Poisson Distribution -- 2.13 The Normal Distribution (Gaussian Distribution) -- 2.14 Stirling’s
Formula -- 2.15*Central Limit Theorem -- 3. Information -- 3.1 Some Basic Ideas -- 3.2* Information Gain: An Illustrative Derivation -- 3.3 Information Entropy and Constraints -- 3.4 An Example from Physics: Thermodynamics -- 3.5* An
Approach to Irreversible Thermodynamics -- 3.6 Entropy—Curse of Statistical Mechanics? -- 4. Chance -- 4.1 A Model of Brownian Movement -- 4.2 The Random Walk Model and Its Master Equation -- 4.3* Joint Probability and Paths. Markov
Processes. The Chapman-Kolmogorov Equation. Path Integrals -- 4.4* How to Use Joint Probabilities. Moments. Characteristic Function. Gaussian Processes -- 4.5 The Master Equation -- 4.6 Exact Stationary Solution of the Master Equation
for Systems in Detailed Balance -- 4.7* The Master Equation with Detailed Balance. Symmetrization, Eigenvalues and Eigenstates -- 4.8* Kirchhoff’s Method of Solution of the Master Equation -- 4.9* Theorems about Solutions of the Master
Equation -- 4.10 The Meaning of Random Processes. Stationary State, Fluctuations, Recurrence Time -- 4.11*Master Equation and Limitations of Irreversible Thermodynamics -- 5. Necessity -- 5.1 Dynamic Processes -- 5.2* Critical Points
and Trajectories in a Phase Plane. Once Again Limit Cycles -- 5.3* Stability -- 5.4 Examples and Exercises on Bifurcation and Stability -- 5.5* Classification of Static Instabilities, or an Elementary Approach to Thorn’s Theory of
Catastrophes -- 6. Chance and Necessity -- 6.1 Langevin Equations: An Example -- 6.2* Reservoirs and Random Forces -- 6.3 The Fokker-Planck Equation -- 6.4 Some Properties and Stationary Solutions of the Fokker-Planck Equation -- 6.5
Time-Dependent Solutions of the Fokker-Planck Equation -- 6.6* Solution of the Fokker-Planck Equation by Path Integrals -- 6.7 Phase Transition Analogy -- 6.8 Phase Transition Analogy in Continuous Media: Space-Dependent Order
Parameter -- 7. Self-Organization -- 7.1 Organization -- 7.2 Self-Organization -- 7.3 The Role of Fluctuations: Reliability or Adaptibility? Switching -- 7.4* Adiabatic Elimination of Fast Relaxing Variables from the Fokker-Planck
Equation -- 7.5* Adiabatic Elimination of Fast Relaxing Variables from the Master Equation -- 7.6 Self-Organization in Continuously Extended Media. An Outline of the Mathematical Approach -- 7.7* Generalized Ginzburg-Landau Equations
for Nonequilibrium Phase Transitions -- 7.8* Higher-Order Contributions to Generalized Ginzburg-Landau Equations -- 7.9* Scaling Theory of Continuously Extended Nonequilibrium Systems -- 7.10*Soft-Mode Instability -- 7.1 l*Hard-Mode
Instability -- 8. Physical Systems -- 8.1 Cooperative Effects in the Laser: Self-Organization and Phase Transition -- 8.2 The Laser Equations in the Mode Picture -- 8.3 The Order Parameter Concept -- 8.4 The Single-Mode Laser -- 8.5
The Multimode Laser -- 8.6 Laser with Continuously Many Modes. Analogy with Superconductivity -- 8.7 First-Order Phase Transitions of the Single-Mode Laser -- 8.8 Hierarchy of Laser Instabilities and Ultrashort Laser Pulses -- 8.9
Instabilities in Fluid Dynamics: The Bénard and Taylor Problems -- 8.10 The Basic Equations -- 8.11 Damped and Neutral Solutions (R ? Rc) -- 8.12 Solution Near R = Rc (Nonlinear Domain). Effective Langevin Equations -- 8.13 The
Fokker-Planck Equation and Its Stationary Solution -- 8.14 A Model for the Statistical Dynamics of the Gunn Instability Near Threshold -- 8.15 Elastic Stability: Outline of Some Basic Ideas -- 9. Chemical and Biochemical Systems -- 9.1
Chemical and Biochemical Reactions -- 9.2 Deterministic Processes, Without Diffusion, One Variable -- 9.3 Reaction and Diffusion Equations -- 9.4 Reaction-Diffusion Model with Two or Three Variables: The Brusselator and the Oregonator
-- 9.5 Stochastic Model for a Chemical Reaction Without Diffusion. Birth and Death Processes. One Variable -- 9.6 Stochastic Model for a Chemical Reaction with Diffusion. One Variable -- 9.7* Stochastic Treatment of the Brusselator
Close to Its Soft-Mode Instability -- 9.8 Chemical Networks -- 10. Applications to Biology -- 10.1 Ecology, Population-Dynamics -- 10.2 Stochastic Models for a Predator-Prey System -- 10.3 A Simple Mathematical Model for Evolutionary
Processes -- 10.4 A Model for Morphogenesis -- 10.5 Order Parameters and Morphogenesis -- 10.6 Some Comments on Models of Morphogenesis -- 11. Sociology: A Stochastic Model for the Formation of Public Opinion -- 12. Chaos -- 12.1 What
is Chaos? -- 12.2 The Lorenz Model. Motivation and Realization -- 12.3 How Chaos Occurs -- 12.4 Chaos and the Failure of the Slaving Principle -- 12.5 Correlation Function and Frequency Distribution -- 12.6 Further Examples of Chaotic
Motion -- 13. Some Historical Remarks and Outlook -- References, Further Reading and Comments
ISBN:9783642964695
Series:eBooks
Series:SpringerLink (Online service)
Series:Springer eBooks
Series:Springer Series in Synergetics: 1
Keywords: Physics , Chemistry , Life sciences , Physics , Physics, general , Chemistry/Food Science, general , Biomedicine general , Life Sciences, general
Availability:Click here to see Library holdings or inquire at Circ Desk (x3401)
Click to reserve this book Be sure to include your ID please.
More info:Amazon.com
More info: Barnes and Noble
Full Text:Click here
Location: ONLINE

Cover
Image
Call number:SPRINGER-1977-9783642963636:ONLINE Show nearby items on shelf
Title:Synergetics An Introduction Nonequilibrium Phase Transitions and Self- Organization in Physics, Chemistry and Biology
Author(s): Hermann Haken
Date:1977
Note:10.1007/978-3-642-96363-6
Contents:1. Goal -- 1.1 Order and Disorder: Some Typical Phenomena -- 1.2 Some Typical Problems and Difficulties -- 1.3 How We Shall Proceed -- 2. Probability -- 2.1 Object of Our Investigations: The Sample Space -- 2.2 Random Variables -- 2.3
Probability -- 2.4 Distribution -- 2.5 Random Variables with Densities -- 2.6 Joint Probability -- 2.7 Mathematical Expectation E(X), and Moments -- 2.8 Conditional Probabilites -- 2.9 Independent and Dependent Random Variables -- 2.10
Generating Functions and Characteristic Functions -- 2.11 A Special Probability Distribution: Binomial Distribution -- 2.12 The Poisson Distribution -- 2.13 The Normal Distribution (Gaussian Distribution) -- 2.14 Stirling’s Formula --
2.15 Central Limit Theorem -- 3. Information -- 3.1 Some Basic Ideas -- 3.2 Information Gain: An Illustrative Derivation -- 3.3 Information Entropy and Constraints -- 3.4 An Example from Physics: Thermodynamics -- 3.5 An Approach to
Irreversible Thermodynamics -- 3.6 Entropy—Curse of Statistical Mechanics? -- 4. Chance -- 4.1 A Model of Brownian Movement -- 4.2 The Random Walk Model and Its Master Equation -- 4.3 Joint Probability and Paths. Markov Processes. The
Chapman-Kolmogorov Equation. Path Integrals -- 4.4 How to Use Joint Probabilities. Moments. Characteristic Function. Gaussian Processes -- 4.5 The Master Equation -- 4.6 Exact Stationary Solution of the Master Equation for Systems in
Detailed Balance -- 4.7 The Master Equation with Detailed Balance. Symmetrization, Eigenvalues and Eigenstates -- 4.8 Kirchhoff’s Method of Solution of the Master Equation -- 4.9 Theorems about Solutions of the Master Equation -- 4.10
The Meaning of Random Processes. Stationary State, Fluctuations, Recurrence Time -- 4.11 Master Equation and Limitations of Irreversible Thermodynamics -- 5. Necessity -- 5.1 Dynamic Processes -- 5.2 Critical Points and Trajectories in
a Phase Plane. Once Again Limit Cycles -- 5.3 Stability -- 5.4 Examples and Exercises on Bifurcation and Stability -- 5.5 Classification of Static Instabilities, or an Elementary Approach to Thom’s Theory of Catastrophes -- 6. Chance
and Necessity -- 6.1 Langevin Equations: An Example -- 6.2 Reservoirs and Random Forces -- 6.3 The Fokker-Planck Equation -- 6.4 Some Properties and Stationary Solutions of the Fokker-Planck Equation -- 6.5 Time-Dependent Solutions of
the Fokker-Planck Equation -- 6.6 Solution of the Fokker-Planck Equation by Path Integrals -- 6.7 Phase Transition Analogy -- 6.8 Phase Transition Analogy in Continuous Media: Space-Dependent Order Parameter -- 7. Self-Organization --
7.1 Organization -- 7.2 Self-Organization -- 7.3 The Role of Fluctuations: Reliability or Adaptibility? Switching -- 7.4 Adiabatic Elimination of Fast Relaxing Variables from the Fokker-Planck Equation -- 7.5 Adiabatic Elimination of
Fast Relaxing Variables from the Master Equation -- 7.6 Self-Organization in Continuously Extended Media. An Outline of the Mathematical Approach -- 7.7 Generalized Ginzburg-Landau Equations for Nonequilibrium Phase Transitions -- 7.8
Higher-Order Contributions to Generalized Ginzburg-Landau Equations -- 7.9 Scaling Theory of Continuously Extended Nonequilibrium Systems -- 7.10 Soft-Mode Instability -- 7.11 Hard-Mode Instability -- 8. Physical Systems -- 8.1
Cooperative Effects in the Laser: Self-Organization and Phase Transition -- 8.2 The Laser Equations in the Mode Picture -- 8.3 The Order Parameter Concept -- 8.4 The Single-Mode Laser -- 8.5 The Multimode Laser -- 8.6 Laser with
Continuously Many Modes. Analogy with Superconductivity -- 8.7 First-Order Phase Transitions of the Single-Mode Laser -- 8.8 Hierachy of Laser Instabilities and Ultrashort Laser Pulses -- 8.9 Instabilities in Fluid Dynamics: The Bénard
and Taylor Problems -- 8.10 The Basic Equations -- 8.11 Damped and Neutral Solutions (R ? Rc) -- 8.12 Solution Near R = Rc (Nonlinear Domain). Effective Langevin Equations -- 8.13 The Fokker-Planck Equation and Its Stationary Solution
-- 8.14 A Model for the Statistical Dynamics of the Gunn Instability Near Threshold -- 8.15 Elastic Stability: Outline of Some Basic Ideas -- 9. Chemical and Biochemical Systems -- 9.1 Chemical and Biochemical Reactions -- 9.2
Deterministic Processes, Without Diffusion, One Variable -- 9.3 Reaction and Diffusion Equations -- 9.4 Reaction-Diffusion Model with Two or Three Variables: The Brusselator and the Oregonator -- 9.5 Stochastic Model for a Chemical
Reaction Without Diffusion. Birth and Death Processes. One Variable -- 9.6 Stochastic Model for a Chemical Reaction with Diffusion. One Variable -- 9.7 Stochastic Treatment ofthe Brusselator Close to Its Soft-Mode Instability -- 9.8
Chemical Networks -- 10. Applications to Biology -- 10.1 Ecology, Population-Dynamics -- 10.2 Stochastic Models for a Predator-Prey System -- 10.3 A Simple Mathematical Model for Evolutionary Processes -- 10.4 A Model for Morphogenesis
-- 11. Sociology: A Stochastic Model for the Formation of Public Opinion -- 12. Some Historical Remarks and Outlook -- References, Further Reading, and Comments
ISBN:9783642963636
Series:eBooks
Series:SpringerLink (Online service)
Series:Springer eBooks
Keywords: Physics , Chemistry , Life sciences , Physics , Physics, general , Chemistry/Food Science, general , Biomedicine general , Life Sciences, general
Availability:Click here to see Library holdings or inquire at Circ Desk (x3401)
Click to reserve this book Be sure to include your ID please.
More info:Amazon.com
More info: Barnes and Noble
Full Text:Click here
Location: ONLINE

Return to the Fermilab Library catalog